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Abstract

The paper considers the problem of deriving the accurate, infinite dimension, Laplace transfer function matrix of a

system consisting of links that are individually governed by a one-dimensional wave equation. The first step is deriving

some single input transfer functions, for a single uniform link. The building blocks of those transfer functions are time

delays, representing the wave motion, and low-order rational expressions, representing the boundary phenomena. The

transfer function approach enables simple yet accurate simulation schemes, exact frequency response for the entire

frequency range, finite time analytical solutions, and a good starting point for dedicated control laws. The transfer function

provides also an alternative way of obtaining many of the well-known properties of flexible structures. Three methods of

modeling multi-link systems are presented. Two of them provide systematic and easy to use approaches for deriving models

for systems of any order.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Flexible structures are governed by partial differential equations (PDE), and hence have infinite dimension.
However, most modeling methods use finite dimension approximations of the system. In the modal approach
the infinite dimension appears as an infinite sum of spatial eigenfunctions multiplied by time functions. In
practice though, only a finite sum is used. In the popular finite element method (FEM), the finite dimension is
achieved by spatial discretization. While finite approximation is practically and even conceptually convenient,
some important properties of the system’s behavior are lost by it.

This paper takes a different approach. It considers the problem of deriving the accurate, infinite dimension,
Laplace transfer function of a system consisting of links that are individually governed by a one-dimensional
wave equation. It is assumed that the system is subjected to a finite number of point actuators (inputs), and
that its behavior at a finite number of locations (outputs) is of interest. The first step is deriving a set of single
input, infinite dimension, transfer functions for a single uniform link. The results, once properly rearranged,
are in line with the wave approach to structures [1–5]. The building blocks of those transfer functions are
time delays, representing the wave motion, and low-order rational expressions, representing the boundary
phenomena.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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The transfer function modeling approach has several theoretical and practical advantages. Simple
algebraic investigation of these transfer functions reveals many properties of the flexible links such as
stability, rigid body degrees of freedom, and reciprocity. In the case of conservative boundary conditions
this represents a different, and to the best of our knowledge new, way of obtaining well-known results
from the modal approach. When the boundary conditions contain dampers, the results presented in this
paper do not have counterparts in classical modal analysis. The practical opportunities offered by the
transfer function approach are accurate yet simple simulation schemes, exact frequency response for the
entire frequency range, analytical solution for the finite time response and identification of dedicated
control laws.

The use of transfer functions to model flexible structures is not a new idea and results for some
cases have been reported [6–13]. The problem is often expressed in terms of the Green’s function of the
system, since the transfer function is the Laplace transform of that function [9]. In some cases, e.g. Ref. [11],
the results are in the spirit of the modal approach and the transfer functions are given as a sum of an infinite
series of modal terms. In other cases, e.g. Ref. [6], closed form expressions were derived only for a free–free
system. A general method, applicable to a wide range of systems, is presented in Ref. [12]. This method
is based on a matrix exponent in the s domain. Numerous transfer functions have been derived in
Ref. [8, Section 1.14], but the general boundary conditions case considered in this paper does not coincide with
any of them.

The class of linear systems governed by a one-dimensional wave equation considered in this paper is
admittedly limited. However, only in this case are the infinite dimension transfer functions directly related to
the wave approach, or in more general terms, to the time response. This is due to the fact that the exponents in
the solution are linear in the Laplace variable s, thus representing time shifts. In beams, on the other hand, the
transfer functions include terms such as exponents of as1=2, where a is a complex constant, which do not
correspond to time-domain operators. In some works, e.g. Ref. [14], the wave motion in more general
structures was considered, using Fourier based spatial transfer functions. It is suggested in Ref. [14] to use
inverse FFT to obtain the time responses. While this is a viable alternative to other modeling methods such as
FEM, it cannot provide insight into the system properties and the controller design. Concentrating on linear
systems governed by a one-dimensional wave equation enables a complete analytical investigation and the
design of a dedicated controller with a distinct structure.

Standard, model based, control strategies are difficult to apply to flexible structures mainly due to the very
high dimension of the FEM or modal models, and the low damping in the system. Taking account of the
delays, or wave motions, in the system can be advantageous for controller design [15]. The explicit, highly
structured, and physically meaningful form of the transfer functions in this paper was used for the design of
dedicated control laws [16–19] that achieve finite spectrum, plus delay. From a physical point of view, this is
achieved by making the actuating end a sink for the returning wave. This concept can be extended beyond the
class of systems addressed in this paper, and also to nonlinear systems. As long as the actuating end has linear
boundary conditions, the same control law will absorb the incoming wave even if the rest of the structure
contains nonlinearities. In more general cases a different control law will be needed, yet the same line of action
is still possible. Recently the wave approach has been applied to control of discrete systems, consisting of
lumped springs and masses, with promising results [20].

After obtaining a transfer function for a single link, the next step in the modeling process is constructing a
model for a multi-link system, possibly with several actuation and measurement points. It should be noted that
since the basic unit is a uniform link, a change in diameter, for example, is considered as another link. Three
methods for constructing the multi-link model will be discussed. They range from algebraic methods, through
recursive assembly of links in a feedback fashion, to the infinite dimension equivalent of a ‘‘dynamic stiffness
matrix’’. As in the single link case, the multi-link transfer functions allow physical insight into the system and
lead to convenient simulation schemes and suitable control laws [18].

The paper is organized as follows. In Section 2 the basic single link, point moment, transfer function, is
derived. It is then extended to distributed moment, non-zero initial conditions, and other transfer function. In
Section 3 the properties of the transfer functions and their physical interpretations are considered. Section 4
discusses possible applications of the transfer function model. Section 5 presents modeling methods for multi-
link structures. The results are summarized and discussed in Section 6.
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2. Modeling of a single link

2.1. The standard problem

As an illustration of a system governed by the wave equation, consider the system in Fig. 1 showing a
uniform rod of length L subjected to a lumped torque moment M(t) at the point x ¼ x0.

Assuming no internal damping, the torsional waves in the system are governed by the wave
equation [4]:

1

c2
q2yðx; tÞ

qt2
�

q2yðx; tÞ
qx2

¼
1

GIp

�MðtÞ � dðx� x0Þ, (1)

where yðx; tÞ is a torsion angle at distance x from the left end, Ip denotes the polar moment of inertia, r is the
material density, G is the shear elasticity modulus, and c ¼ ðG=rÞ1=2 is the wave propagation velocity. The
boundary conditions are given by

IpG
qyðx; tÞ
qx

¼ J1
q2yðx; tÞ

qt2
þD1

qyðx; tÞ
qt
þ K1yðx; tÞ; x ¼ 0,

IpG
qyðx; tÞ
qx

¼ � J2
q2yðx; tÞ

qt2
þD2

qyðx; tÞ
qt
þ K2yðx; tÞ

� �
; x ¼ L, (2)

where Ji, Di and Ki, i ¼ 1; 2 are the inertia, damper and spring constant at an end. This general setting includes
all linear boundary conditions of interest. For example, in a free end all the coefficients are identically zero,
and a fixed end is obtained when K !1 (or J !1).

A Laplace transform with respect to time converts the PDE (1) into an ODE in x:

q2yðx; sÞ
qx2

�
s2

c2
yðx; sÞ ¼ �

1

GIp

�MðsÞdðx� x0Þ, (3)

where M(s) and yðx; sÞ denote Laplace transforms, with respect to time, of M(t) and yðx; tÞ respectively. The
boundary conditions become

IpG
qyðx; sÞ
qx

¼ ðJ1s2 þD1sþ K1Þyðx; sÞ; x ¼ 0;

IpG
qyðx; sÞ
qx

¼ �ðJ2s
2 þD2sþ K2Þyðx; sÞ; x ¼ L:

(4)

It is shown in Appendix A that the solution of Eq. (3) is

yðx; sÞ ¼ �
cMðsÞ

4GIps
ðesjx�x0j=c � e�sjx�x0j=cÞ þ C1ðsÞe

sx=c þ C2ðsÞe
�sx=c. (5)
M(t) �(x,t)

B.C.1

x0

x

L

B.C.2

Fig. 1. The flexible system.
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Substituting Eq. (5) into the boundary conditions (4) gives, after solving the two linear equations for C1(s) and
C2(s) (see Appendix A for complete derivation), the following transfer function:

yðx; x0; sÞ

MðsÞ
¼

1

2fs
�
e�ðg�dÞts þ R1ðsÞe

�ðgþdÞts þ R2ðsÞe
�ð2�g�dÞts þ R1ðsÞR2ðsÞe

�ð2�gþdÞts

1� R1ðsÞR2ðsÞe�2ts
; xXx0;

1

2fs
�
e�ðd�gÞts þ R1ðsÞe

�ðgþdÞts þ R2ðsÞe
�ð2�g�dÞts þ R1ðsÞR2ðsÞe

�ð2�dþgÞts

1� R1ðsÞR2ðsÞe�2ts
; xpx0;

8>>><
>>>:

(6)

where

f ¼
GIp

c
; t ¼

L

c
; g ¼

x

L
; d ¼

x0

L

and

RiðsÞ ¼
fs� ðJis

2 þDisþ KiÞ

fsþ ðJis2 þDisþ KiÞ
; i ¼ 1; 2. (7)

The physical interpretation of these quantities will be discussed in Section 3. By defining

b ¼
jx� x0j

L
; Z ¼

maxðx;x0Þ

L
,

the two equations for the transfer function can be combined into the single expression

Gðx;x0; sÞ ¼
1

2fs
�
e�bts þ R1ðsÞe

�ð2Z�bÞts þ R2ðsÞe
�ð2�2ZþbÞts þ R1ðsÞR2ðsÞe

�ð2�bÞts

1� R1ðsÞR2ðsÞe�2ts
, (8)

or equivalently

Gðx;x0; sÞ ¼
1

2fs
�
ð1þ R1ðsÞe

�2ðZ�bÞtsÞð1þ R2ðsÞe
�2ð1�ZÞtsÞ

1� R1ðsÞR2ðsÞe�2ts
e�bts. (9)

The latter form emphasizes the pure delay of the system, which is bt, and is also convenient for the special
cases given in Table 1.

2.2. Extensions-distributed moment and initial conditions

The fundamental transfer function derived in the previous subsection assumes that the external moment is
applied at a point and that the initial conditions are zero. In general, the moment may be distributed, as shown
in Fig. 2, and the initial conditions are given by yðx; 0Þ ¼ y0ðxÞ, qy=qtðx; 0Þ ¼ o0ðxÞ.
Table 1

Special cases of the transfer function

Case G(x,s)

x0 ¼ 0 1

2fs
�
ð1þ R1ðsÞÞð1þR2ðsÞe

�2ð1�bÞtsÞ

1� R1ðsÞR2ðsÞe�2ts
e�bts

x0 ¼ x 1

2fs
�
ð1þR1ðsÞe

�2ZtsÞð1þ R2ðsÞe
�2ð1�ZÞtsÞ

1� R1ðsÞR2ðsÞe�2ts

x0 ¼ x ¼ 0 1

2fs
�
ð1þR1ðsÞÞð1þ R2ðsÞe

�2tsÞ

1� R1ðsÞR2ðsÞe�2ts

x0 ¼ 0, x ¼ L 1

2fs
�
ð1þ R1ðsÞÞð1þR2ðsÞÞe

�ts

1� R1ðsÞR2ðsÞe�2ts
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Fig. 2. A structure with distributed moment.

M(x,t)�in(t)

x

Fig. 3. A fixed–free system with an angle input.
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A Laplace transform leads then to the following ODE:

q2yðx; sÞ
qx2

�
s2

c2
yðx; sÞ ¼ �

1

GIp

�MðsÞf ðxÞ �
s

c2
� y0ðxÞ �

1

c2
� o0ðxÞ. (10)

yðx; sÞ can be derived by solving the equation, including its boundary conditions that are unchanged. However,
treating the functions f ðxÞ, y0ðxÞ and o0ðxÞ as weighted infinite sums of delta functions, it is easier to use the
convolution, or Green function [9] integral

yðx; sÞ ¼MðsÞ

Z L

0

Gðx;x0; sÞf ðx0Þ dx0 þ srIp

Z L

0

Gðx;x0; sÞy0ðx0Þ dx0 þ rIp

Z L

0

Gðx;x0; sÞo0ðx0Þ dx0. (11)

The identity r ¼ G=c2 was used in the last two terms. Numerical integration can be used if no analytic
expression exists for the integral, or equivalently for the differential equation (10). Even though the moment is
distributed, M(t) is a scalar and one can obtain the SISO transfer function from M(s) to yðx; sÞ as

yðx; sÞ
MðsÞ

¼

Z L

0

Gðx;x0; sÞf ðx0Þ dx0. (12)

2.3. Some other transfer functions

Next we consider a similar problem that is required for the dynamic stiffness approach for multiple-link
modeling in Section 5. Consider the system in Fig. 3, where a flexible link is fixed at one end and is rotated by
an angle yinðtÞ at the other.

This time we are interested in the transfer function from the input angle yin to the moments in the rod. The
system is still governed by the one-dimensional wave equation (1), but the boundary conditions change to

yð0; tÞ ¼ yinðtÞ; yðL; tÞ ¼ 0. (13)

A derivation similar to the previous case leads to

KcðsÞ ¼
Mð0; sÞ

yinðsÞ
¼

fsð1þ e�2tsÞ

1� e�2ts
, (14)

KncðsÞ ¼
MðL; sÞ

yinðsÞ
¼

2fse�ts

1� e�2ts
. (15)

Here the subscripts ‘c’, and ‘nc’, stand for collocated and non-collocated, respectively.
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Some methods of multi-link modeling, which will be presented in the sequel, give only the angles at the ends
of a flexible rod. The angle at any point along the rod is then given by

yðx; sÞ ¼
e�gts � e�ð2�gÞts

1� e�2ts
yð0; sÞ þ

e�ð1�gÞts � e�ð1þgÞts

1� e�2ts
yðL; sÞ. (16)

3. Physical interpretation of the transfer function

The transfer function (8) was derived in a straightforward mathematical manner, but it has a distinct
structure that corresponds to a clear and meaningful physical interpretation. These properties are analyzed in
this section, and their applications are given in Section 4.
3.1. Delays and the wave approach

Since c is the wave propagation velocity, t is the time required for the wave to travel from one end to
another, and can be regarded as the time constant of the structure. The numerator of G(x,x0,s) contains four
exponents with negative argument, which are time delays. They represent the four possible routes of the wave
from x0 to x, without completing a full cycle, and are shown in Fig. 4 for x4x0. The shortest route is clearly
the direct one, and it is the pure time delay existing in the system, as can be seen from Eq. (9).

Ri(s) are dynamic reflection coefficients of the motion at each end. Some important special cases are of
interest. If the end is free, then RiðsÞ ¼ 1 and the wave is returned identically. A fixed end is obtained by
Ki !1 (equivalently Ji !1), which results in RðsÞ ¼ �1. The wave is then returned identically but with a
changed sign. If the end contains no damper, then it follows immediately that RiðsÞRið�sÞ ¼ 1 and
consequently jRiðjoÞj ¼ 1. This property is an indication of conservation of energy, which exists in systems
without dampers.

A transfer function that is based on delays, representing the wave motion along the flexible link, and
dynamic reflection coefficients, describes the system in terms of the moving wave approach. This is a major
departure from the modal approach where the moving waves are described as an infinite sum of standing
waves.
3.2. Relationship with classical vibration theory

While the approach in this paper is different from the classical vibration theory, e.g. Refs. [4,21], all the
results of the latter can be recovered from the transfer function (8). This sub-section is devoted to showing
those well-known results from a different point of view, and to demonstrate the wealth of information
included in the transfer function (8). The results are given here in a brief manner and elaborated derivation
and discussion of them can be found in Ref. [19].
X0 X

Fig. 4. The four time delays in G(x,s).
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Reciprocity: The transfer function does not change if the actuation and measurement points are
interchanged. This is immediate from the fact that Z and b remain the same.

Eigenvalues: The eigenvalues of the system in all possible cases are the roots of the characteristic equation

1� R1ðsÞR2ðsÞe
�2ts ¼ 0. (17)

In conservative systems, where jRiðjoÞj ¼ 1, the roots are purely imaginary and only the phase angle has to be
considered. The natural frequencies in that case are the solutions of

tan�1
fok

K1 � J1o2
k

þ tan�1
fok

K2 � J2o2
k

þ tok ¼ kp. (18)

This equation is different and more explicit than the one usually used in classical control texts. For example it
reveals immediately that if both ends contain inertia then as k increases, ok ! ðk � 2Þp=t. In case only one
end contains inertia, with or without a spring, and the other end contains only a spring, then as k increases,
ok ! ðk � 3=2Þp=t, etc. It is worth noting that Eq. (18) is in accordance with the phase closure principle,
which exists in conservative systems [22].

Stability: The following observations are proven in Appendix B by considering the characteristic
equation (17).
(a)
 The system does not have poles (eigenvalues) in the open right half-plane (ORHP) for all possible values of
the inertia, spring constant and damping, including zero.
(b)
 If at least one of the damping elements Di is non-zero then the system has one pole at the origin (if no
springs exist) and all other poles are in the OLHP.
(c)
 In the absence of damping all the poles are on the imaginary axis (natural frequencies).
Poles at the origin (rigid body modes): The transfer function (8) has two poles at the origin if the boundary
conditions consist of inertias only, one pole if there exists at least one damper (but no springs), and no such
poles if there exists at least one spring.
3.3. Comparison with finite dimension models

A common way of modeling flexible structures, mainly for conservative systems, is expressing yðx; tÞ as

yðx; tÞ ¼
XN

k¼1

VkðxÞqkðtÞ (19)

for a certain finite N. This approximation leads to a state space model of order n ¼ 2N. If the spatial functions
V kðxÞ are the exact modeshapes of the system, then Eq. (19) represents the modal truncation method. This
form can be obtained directly from Eq. (8) by writing

Gðx; sÞ ¼
c00ðxÞ

s2
þ

c0ðxÞ

s
þ
X1
k¼1

ckðxÞ

s� pk

þ
c̄kðxÞ

s� p̄k

� �
: (20)

The existence of the first two terms depends on the number of poles at the origin, and pk are the poles of the
system, i.e. the roots of Eq. (17). The coefficients ck(x) are given by

ckðxÞ ¼ lim
s!pk

ðs� pkÞGyðx; sÞ. (21)

By writing G(x,x0,s), with obvious notation, as

Gðx; x0; sÞ ¼
Nðx; sÞ

2fsDðsÞ
, (22)
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Fig. 5. Impulse response of the true system (top left) and three FEM models with 5, 10 and 25 elements. The moment MðtÞ acts on the left

end, the normalized angle is 2f � yðLÞ and the normalized time is t=t.
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we can obtain, using L0 hôpital’s principle, explicit expressions for ck(x):

ckðxÞ ¼
Nðx; pkÞ

2fpkD0ðpkÞ
¼

Nðx; pkÞ

2fpk 2t� R01ðpkÞ

R1ðpkÞ
�

R02ðpkÞ

R2ðpkÞ

� � . (23)

In Eq. (23) ‘‘0’’ denotes derivative with respect to s. In the absence of any spring (otherwise s ¼ 0 is not a pole),
formal derivation leads to the following expected expressions for c00ðxÞ and c0ðxÞ.

c00ðxÞ ¼
1

J1þJ2þJr
; D1 ¼ D2 ¼ 0

0 otherwise

(
; c0ðxÞ ¼

0 D1 ¼ D2 ¼ 0;
1

D1þD2
otherwise:

(
(24)

Here Jr ¼ rIpL is the moment of inertia of the rod itself. Taking N terms of the series, one gets, for any given
x, the same transfer function that would have been obtained by calculating the eigenvalues and eigenfunctions
of the system and transforming it to modal coordinates.

If the spatial functions Vk(x) are admissible functions satisfying the geometrical boundary conditions, then
Eq. (19) represents the assumed mode method. The FEM can be regarded as a special case of the latter method
when Vk(x) have a certain structure with a local support. While the finite approximation methods are fairly
accurate (absolutely accurate in case of modal truncation) in approximating the natural frequencies, the
models do not posses a direct relationship with the delay. This is due to the fact that the delay is not related to
a single mode (spatial function) or to a group of modes, but is a consequence of all the modes acting together.
As the delay, or wave, is a key element of the structure’s motion, invaluable insight is lost when one refers to
finite dimension modeling.

The impulse response at the free end of a free–free rod subjected to a torque at the other end is shown
in Fig. 5, together with three FEM approximations. As can be seen, even a system of order 50 is not capable of
approaching the true response. Notice also that although all the poles are purely imaginary, the true response
is not oscillatory. The oscillations in the approximations are thus artifacts of modeling and are not related to
the physical behavior.

4. Applications of the transfer function

The distinct structure of the transfer function leads to several applications and insights that cannot be
obtained by standard modal and FEM modeling.
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Fig. 6. A simulation scheme for the angle at x ¼ L.
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4.1. Simulation

Treating the denominator of G(x,x0,s) as if it is a result of feedback, we arrive at a simple simulation scheme
consisting only of delays and linear second-order blocks, as is shown in Fig. 6. Standard simulation software,
e.g. Simulink, can now be easily used to obtain an accurate time response at any number of points along the
flexible link, as a result of different excitation conditions. This approach is much more efficient than numerical
solution of the PDE. As was already demonstrated, finite dimension approximations such as FEM or
truncated modal model often perform poorly in the time domain.
4.2. Analysis and design of damping elements

The effect of damping on the structure response is often of interest [23,24]. Modal approaches cannot
handle lumped dampers at the ends, and FEM models give only an approximation. The characteristic
equation (17) is convenient for analyzing the damping effect and can be useful in the design of such devices.
The following simple example demonstrates this possibility.

Example 1: Consider a free–free rod and two dampers with constant D. One option, which will be called
case I, is to put one damper on each side. The other option, denoted case II, is to put both of them in parallel
on one side, which is equivalent to a single damper with a constant 2D. The question is which configuration
will provide more damping to the system. Calculating the reflection coefficients Ri(s) for each case we obtain,

R1;I ¼ R2;I ¼
1� d

1þ d
; R1;II ¼

1� 2d

1þ 2d
; R2;II ¼ 1.

Here d ¼ D=f is the non-dimensional damping. The characteristic equation in this case is

1� R1R2e
�2ts ¼ 0.

leading to the following sets of poles:

Refpk;Ig ¼
1
t ln

j1�dj
1þd

� �
; Imfpk;Ig ¼

pk
t ,

Refpk;IIg ¼
1
2t ln

j1�2dj
1þ2d

� �
; Imfpk;IIg ¼

pk
t ; do1;
pðk�1=2Þ

t ; d41:

(

Several interesting observations can be made. The real part is common to all poles, a property called uniform
damping [24]. There are critical values, d ¼ 1 in case I and d ¼ 1

2
in case II, where the poles go to infinity and

the end becomes a sink for the wave. Beyond those values, increasing the damper constant results in decreased
damping (real part) until as d approaches infinity the systems have no damping at all. In case I the damped
natural frequencies (imaginary part) do not change with d while in case II this is true except for a jump at
d ¼ 1

2
. Finally, to answer the question in the beginning of the example, Fig. 7 shows that in the relevant range

of do 1
2
, configuration II, i.e. the two dampers in one side, results in poles with larger absolute value of the real

part and hence with faster decay.
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4.3. Time and frequency responses

Analytical solution: Using long division, G(x, x0,s) can be written as

Gðx; x0; sÞ ¼
X1
k¼0

X4
i¼1

½R1ðsÞR2ðsÞ�
kPiðsÞe

�ðhiþ2kÞts, (25)

where Pi(s) and hi correspond to the appropriate term of the numerator, e.g. P2ðsÞ ¼ R1ðsÞ, h2 ¼ 2Z� b.
Suppose now that a solution is required only for [0, T], then there is no need to consider the terms with delays
greater than T, and an equivalent transfer function is given by a finite series. As each term represents a delayed
linear system, an exact analytical solution can be obtained for any input.

Frequency response: The exact frequency response function (FRF) for the entire frequency range is obtained
by simply calculating Gðx;x0; joÞ. All finite approximations give the FRF only in a finite frequency band. It
should be noted that truncated modal models have the correct natural frequencies, but not the accurate
frequency response even at the range of frequency included in the model.
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4.4. Feedback control design

The exact and explicit form of the transfer function can be used for the design of the feedback tracking
control system shown in Fig. 8. This is the subject of several papers, e.g. Refs. [16,19], and will be discussed
here only briefly.

Consider the collocated rate feedback, which is the inner loop in Fig. 8.

MðsÞ ¼ uðsÞ �
2fR1ðsÞ

1þ R1ðsÞ
oð0; sÞ. (26)

By using that control law the delay is eliminated from the characteristic function and the closed loop transfer
function from the command u(s) to the displacement at x ¼ L, the point of the outer feedback, is

yðL; sÞ
uðsÞ

¼
1þ R2ðsÞ

2fs
e�ts ¼

e�ts

J2s2 þ ðD2 þ fÞsþ K2
. (27)

In the absence of inertia, the control law (26) reduces to a constant rate feedback, hence it can be considered as
a generalization of the cases discussed in Example 1. The elimination of the poles is achieved when the end
becomes a sink for the wave. Having the form of a rational transfer function plus delay, dead time
compensators [25] can be used in the outer, position loop. The overall transfer function becomes then rational,
with arbitrarily assigned dynamics, plus delay.

5. Modeling of multi-link systems

5.1. Problem statement

In the previous sections the transfer function model of a single link was derived, analyzed and discussed.
Many structures consist of combinations of flexible links, and therefore a transfer function for more complex
systems is sought. In this section, we extend the results obtained for a single link to a structure consisting of
multiple links. We consider the case of N inertias connected by N�1 flexible rods shown in Fig. 9.

Each inertia Jk is connected to a constant frame (skyhook) with a spring Kk and a dashpot Dk, and is
subjected to an external moment Mk. Some or all of those quantities may be zero, and the ‘‘inertia’’ k actually
represents any kind of discontinuity, e.g. a change in the rod diameter. In Section 2, we derived the
relationship between the angle at a general point along a link and the two angles at the ends. Therefore, it is
sufficient to derive the transfer function from an input torque to the principal angles yiðtÞ. In the following
subsections we present three different approaches for this modeling problem. The first one, the direct algebraic
approach is the most obvious way of approaching the problem, and is given here mainly for comparison with
the other two that seem to be more promising.

5.2. Direct algebraic approach

The first method is algebraic, consisting of writing a separate PDE for each link and combining them
through the boundary conditions. This approach is similar to common procedures in time domain [26], yet it is
in the Laplace domain. It follows the same steps as for a single link, but for a set of equations. We present
Inertia
1

�1

Link 1

Inertia
2

M2
�2

Link 2

Inertia
N

MN
�NM1

Link N-1

Fig. 9. A flexible multi-link system.
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details for a two-link system, which is governed by two wave equations, shown already in the s domain

q2yiðxi; sÞ

qx2
i

�
s2

c2i
yiðxi; sÞ ¼ 0; i ¼ 1; 2, (28)

where yiðxi; sÞ is a torsion angle at distance xi from the left end of each flexible rod. ri, Gi, ci and Ipi, i ¼ 1; 2 are
defined as before. The boundary conditions are given by

G1IP1
qy1
qx1
ð0; sÞ ¼ J1s2 þD1sþ K1

� �
y1ð0; sÞ �MðsÞ,

G2IP2
qy2
qx2
ðL2; sÞ ¼ � J3s2 þD3sþ K3

� �
y2ðL2; sÞ,

y1ðL1; sÞ ¼ y2ð0; sÞ,

G2IP2
qy2
qx2
ð0; sÞ � G1IP1

qy1
qx1
ðL1; sÞ ¼ J2s2 þD2sþ K2

� �
y2ð0; sÞ. ð29Þ

The solution of Eq. (28) is given by

yiðxi; sÞ ¼ Ci1ðsÞ � e
sxi=ci þ Ci2ðsÞ � e

�sxi=ci ; i ¼ 1; 2. (30)

The next step is substituting Eq. (30) into the boundary conditions and solving the four linear equations for
the ‘constants’ Cij(s). Since the only non-homogeneous term is M(s), all of these functions are proportional to
it. After some lengthy derivation and rearranging, one arrives at the following transfer functions:

y1ðx1; sÞ

MðsÞ
¼
ðB0ðsÞ þ B1ðsÞe

�2ð1�b1Þt1s þ B2ðsÞe
�2t2s þ B3ðsÞe

�2ðt1þt2�b1t1ÞsÞ � e�b1t1s

s � ðA0ðsÞ þ A1ðsÞe�2t1s þ A2ðsÞe�2t2s þ A3ðsÞe�2 t1þt2ð ÞsÞ
(31)

y2ðx2; sÞ

MðsÞ
¼

C1ðsÞe
�ðt1þb2t2Þs þ C2ðsÞe

�ðt1þ2t2�b2t2Þs

s � ðA0ðsÞ þ A1ðsÞe�2t1s þ A2ðsÞe�2t2s þ A3ðsÞe�2 t1þt2ð ÞsÞ
. (32)

Here

fi ¼
GiIpi

ci

; ti ¼
Li

ci

; bi ¼
xi

Li

; i ¼ 1; 2

and Ai(s), Bi(s) and Ci(s) are polynomials whose explicit form is not shown here for the sake of brevity. Similar
to a single link, long division of the numerator of Eq. (31) by its denominator leads to an infinite sum of
delayed rational transfer functions. Fig. 10 shows some of the first delays. The physical interpretation is that
each time the wave arrives at the discontinuity point, part of it moves in the same direction while another part
is reflected back.
Fig. 10. The first routes (time delays) of the moment to a point in the first link.
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Fig. 12. Block diagram of the feedback connection.
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5.3. Feedback approach

While the derivation in the previous subsection is certainly valid, and using it we were able to obtain the
required transfer functions, it suffers from some drawbacks. First, the complexity of the expressions makes it
difficult to identify any underlying structure. Secondly, extending the results to a larger number of links does
not look promising.

In this subsection a different approach is taken. The system is partitioned into several smaller subsystems,
and the model is constructed by using the correct interrelations existing between them. Applying that
approach to a two-link system, the first step is to artificially disconnect the right flexible rod from the left
subsystem and replace it by two torques with magnitude T(t) acting on the two substructures in opposite
directions. As a result we obtained two one-link subsystems, as shown in Fig. 11.

The left subsystem has inertia 1 and inertia 2 as its boundaries. Its transfer functions, denoted by
GLðx10;x1; sÞ are given by Eq. (8) with f1, t1, and b1 replacing f, t, and b, respectively. The right subsystem
has a free left boundary condition and inertia 3 on its right end. Hence its transfer functions, denoted by
GRðx20;x2; sÞ are given by Eq. (8) with f2, t2, b2, 1 and R3(s) replacing f, t, b, R1(s), and R2(s), respectively,
where R3(s) is defined as

R3ðsÞ ¼
f2s� J3s

2 þD3sþ K3

� �
f2sþ J3s2 þD3sþ K3ð Þ

. (33)

The torque T(t) reflects the restoring action of the right subsystem when an angle input is applied to it. The
overall motion in the left subsystem is a superposition of the responses to both M(t) and T(t). This procedure
leads to the block diagram in Fig. 12.

Notice that all the transfer functions in the figure are similar to the cases listed in Table 1. Direct
calculating yields

y1ðx1; sÞ

MðsÞ
¼ GLðx1; 0; sÞ �

GLðx1;L1; sÞGRð0; 0; sÞ
�1GLð0;L1; sÞ

1þ GRð0; 0; sÞ
�1GLðL1;L1; sÞ

¼
GLðx1; 0; sÞGRð0; 0; sÞ þ GLðx1; 0; sÞGLðL1;L1; sÞ � GLðx1;L1; sÞGLð0;L1; sÞ

GRð0; 0; sÞ þ GLðL1;L1; sÞ
, ð34Þ

y2ðx2; sÞ

MðsÞ
¼

GRðx2; 0; sÞGRð0; 0; sÞ
�1GLð0;L1; sÞ

1þ GRð0; 0; sÞ
�1GLðL1;L1; sÞ

¼
GRðx2; 0; sÞGLð0;L1; sÞ

GRð0; 0; sÞ þ GLðL1;L1; sÞ
. ð35Þ
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Explicit evaluation of the expressions in Eqs. (34) and (35) verifies that they are indeed identical with those in
Eqs. (31) and (32). If the structure contains more than two links the process is repeated with the new
disconnection point just before the last link, and the left subsystem is the entire system in Fig. 11. It is also
possible to use larger subsystems on the right. For example, combining two two-link systems, whose transfer
functions have already been calculated, yields the one for four links. Thus, using the feedback approach one
can systematically find the exact, infinite dimensional, transfer function of a flexible system with any number
of links.

Example 2: Consider a system with three identical mass moments of inertia J, connected by two identical
links. The characteristic equation, given by the denominator of Eqs. (34) and (35) becomes

0 ¼ 2fs 1� R2ðsÞe�2ts
� �

1þ RðsÞe�2ts
� �

þ fsð1þ RðsÞÞ 1þ RðsÞe�2ts
� �

1� RðsÞe�2ts
� �

¼ fs 3þ RðsÞ þ 2RðsÞ � 2R2ðsÞ
� �

e�2ts � RðsÞ þ 3R2ðsÞ
� �

e�4ts
� �

¼ fsð1þ RðsÞe�2tsÞ 1�
RðsÞ þ 3R2ðsÞ

3þ RðsÞ
e�2ts

� �

¼ fs 1þ
f� Js

fþ Js
e�2ts

� �
1�

f� Js

fþ Js

2f� Js

2fþ Js
e�2ts

� �
.

The first term is the pole at the origin, existing whenever the system does not have springs. The second
is identical with the characteristic equation of a link clamped in one end, which indeed contains all
the anti-symmetric modes of the system. The third term gives all the symmetric modes. Following the
analysis in Appendix B it can be shown that all the poles are purely imaginary (also obvious since the
system is conservative). Furthermore, the two expressions multiplying the exponents have unity absolute value
for s ¼ jo. Hence the set of natural frequencies contains all o that satisfy either one of the following
equations:

tan�1ðJok=fÞ þ tok ¼ ðk þ 1=2Þp,

tan�1ðJom=fÞ þ tan�1ðJom=2fÞ þ tom ¼ mp.

These equations provide a much more convenient way of finding the natural frequencies for this three mass
system than the one from classical vibration theory that is implicit.

5.4. Dynamic stiffness approach

The basic unit in the feedback approach in the previous section is a link together with its boundaries, and
the model was obtained by combining links. A different approach is to consider the inertias as the ‘main’
elements and looking at the links as connections between them. Applying Newton’s second law to the kth
inertia in Fig. 9, we have

Jk

d2yk

dt2
¼ �Dk

dyk

dt
� Kkyk þMk þ Tk�1;k�1 þ Tk�1;k þ Tk;kþ1 þ Tk;k. (36)

Here
Tk�1,k�1 is the moment applied to Jk by link k�1 as a result of the angle yk�1 when yk is fixed.
Tk�1,k is the moment applied to Jk by link k�1 as a result of the angle yk when yk�1 is fixed.
Tk,k+1 is the moment applied to Jk by link k as a result of the angle yk+1 when yk is fixed.
Tk,k is the moment applied to Jk by link k as a result of the angle yk when yk+1 is fixed.
Notice that if the links were modeled as pure springs, Tk�1;k�1 þ Tk�1;k ¼ Kðyk�12ykÞ, and the same for the
other link. Hence Eq. (36) is a generalization of the standard mass–spring modeling method. The role of of
Kc(s) and Knc(s) in Eqs. (14) and (15) is revealed now, since they generate the four moments Ti,j. The index k,
or k�1, in the following formulas denotes the links to which these transfer function belong. Notice that these
are properties of the link, and due to symmetry are the same when ykðtÞ is fixed and ykþ1ðtÞ is the input. The
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Laplace transform of Eq. (36) can be written as

AkðsÞykðsÞ ¼MkðsÞ þ Kk�1;ncðsÞyk�1ðsÞ � Kk�1;cðsÞykðsÞ þ Kk;ncðsÞykþ1ðsÞ � Kk;cðsÞykðsÞ. (37)

K0;cðsÞ ¼ KN ;cðsÞ ¼ 0, since the end inertias have only one flexible connection, and

AkðsÞ ¼ Jks2 þDksþ Kk.

After rearranging Eq. (37) can be written as

�Kk�1;ncðsÞyk�1ðsÞ þ ðAkðsÞ þ Kk�1;cðsÞ þ Kk;cðsÞÞykðsÞ � Kk;ncðsÞykþ1ðsÞ ¼MkðsÞ. (38)

Using the definition

SkðsÞ ¼ AkðsÞ þ Kk�1;cðsÞ þ Kk;cðsÞ.

the overall system is now given by

S1ðsÞ �K1;ncðsÞ 0 � � � 0

�K1;ncðsÞ S2ðsÞ �K2;ncðsÞ 0 ..
.

0 �K2;ncðsÞ S3ðsÞ
. .
.

0

..

.
0 . .

. . .
.

�KN�1;ncðsÞ

0 � � � 0 �KN�1;ncðsÞ SN ðsÞ

2
6666666664

3
7777777775

y1ðsÞ

y2ðsÞ

y3ðsÞ

..

.

yN ðsÞ

2
66666664

3
77777775
¼

M1ðsÞ

M2ðsÞ

M3ðsÞ

..

.

MNðsÞ

2
66666664

3
77777775
. (39)

Any transfer function between any input Mi(s) and any output yi(s) can be obtained by solving this set of
equations. This is probably the most natural, and the easiest to use, modeling method for a multi-link system.
Actually it coincides with the spectral finite element method [3], once one makes the substitution s ¼ jo. The
structure of the model (39), as well as that of Eqs. (34) and (35), enables derivation of control laws for
stabilization and tracking [18].
6. Conclusion

A method of transfer function modeling for multi-link flexible systems, governed by the wave equation, is
presented. First a closed form expression for the transfer function of a single link is derived and analyzed. The
building blocks of the transfer function are time delays, representing the wave motion, and low-order rational
expressions, representing the boundary phenomena. Comparing the transfer function to finite dimension
approximations reveals some advantages. Unlike modal models, the method handles lumped damping
elements at the ends in a natural manner, and unlike FEM it gives the exact poles as the roots of its
denominator. Even more fundamental is the explicit recognition of the wave motion and reflection as the
principal mechanism of the response. This well-known fact is heavily masked, practically absent, in FEM and
modal models. The transfer function approach leads naturally to accurate, yet simpler than solving PDEs,
simulation schemes consisting of low-order linear blocks and delays. From a strict mathematical point of view
the scheme is still infinite dimensional because of the delays, however in practice this is a standard block in
many simulation software packages. Another application where the transfer function model is advantageous is
feedback control design. Besides being the natural form of model for that task, the specific structure of the
transfer function leads to control laws that eliminate the delay from the closed loop. The wave-delay
correspondence implies that the control law makes the actuating end a sink for the returning wave.

The transfer function modeling method is extended to structures with multiple links, where three methods of
constructing the multi-link model are discussed. The better ones seem to be the feedback approach and the
infinite dimension equivalent of a ‘‘dynamic stiffness matrix’’. These methods provide a systematic way of
assembling any number of single link transfer functions into a large multi-link model. As in the single link
case, the multi-link transfer functions allow physical insight into the system, and the usefulness of the
approach for classical vibration analysis, control synthesis and simulation is demonstrated.
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Appendix A. Detailed derivation of the transfer function Gðx; x0; sÞ

The first step is showing that Eq. (5) is indeed the solution of Eq. (3). It is easily seen that at any xax0,
yðx; sÞ can be written as

yðx; sÞ ¼ C̄1ðsÞe
sx=c þ C̄2ðsÞe

�sx=c, (A.1)

which is identical with the homogeneous solution only with different coefficients. Hence at xax0 the left-hand
side is equal to zero, same as the right-hand side. Notice now that

qyðx; sÞ
qx

¼

�
MðsÞ
4GIp
ðesðx�x0Þ=c þ e�sðx�x0Þ=cÞ þ s

c
ðC1ðsÞe

sx=c � C2ðsÞe
�sx=cÞ; x4x0;

MðsÞ
4GIp
ðesðx�x0Þ=c þ e�sðx�x0Þ=cÞ þ s

c
ðC1ðsÞe

sx=c � C2ðsÞe
�sx=cÞ; xox0:

8<
: (A.2)

Evaluating these expressions near x0 yields

qyðx; sÞ
qx

¼

�
MðsÞ
2GIp
þ s

c
ðC1ðsÞe

sx0=c � C2ðsÞe
�sx0=cÞ; x ¼ xþ0 ;

MðsÞ
2GIp
þ s

c
ðC1ðsÞe

sx0=c � C2ðsÞe
�sx0=cÞ; x ¼ x�0 :

8<
: (A.3)

Hence

qy
qx
ðxþ0 ; sÞ �

qy
qx
ðx�0 ; sÞ ¼ �

MðsÞ

GIp

. (A.4)

That jump is translated to a delta function in the second derivative with the same magnitude as the right-hand
side of Eq. (3). Substituting Eq. (5) into the boundary conditions (4) gives, after rearranging

b2ðsÞC1ðsÞ þ b1ðsÞC2ðsÞ ¼
MðsÞ

4fs
ðb1ðsÞe

sx0=c � b2ðsÞe
�sx0=cÞ, (A.5)

b3ðsÞe
sL=cC1ðsÞ þ b4ðsÞe

�sL=cC2ðsÞ ¼
MðsÞ

4fs
ðb3ðsÞe

sðL�x0Þ=c � b4ðsÞe
�sðL�x0Þ=cÞ. (A.6)

Here

b1ðsÞ ¼ A1ðsÞ þ fs; b2ðsÞ ¼ A1ðsÞ � fs; b3ðsÞ ¼ A2ðsÞ þ fs; b4ðsÞ ¼ A2ðsÞ � fs

and f and AiðsÞ were already defined. Eqs. (A.5) and (A.6) are linear in C1(s) and C2(s), and their solution is

C1ðsÞ ¼
MðsÞ

4fs

b1ðsÞb3ðsÞe
sðL�x0Þ=c þ b2ðsÞb4ðsÞe

�sðLþx0Þ=c � 2b1ðsÞb4ðsÞe
�sðL�x0Þ=c

b1ðsÞb3ðsÞesL=c � b2ðsÞb4ðsÞe�sL=c
, (A.7)

C2ðsÞ ¼
MðsÞ

4fs

b1ðsÞb3ðsÞe
sðLþx0Þ=c þ b2ðsÞb4ðsÞe

�sðL�x0Þ=c � 2b2ðsÞb3ðsÞe
sðL�x0Þ=c

b1ðsÞb3ðsÞesL=c � b2ðsÞb4ðsÞe�sL=c
. (A.8)

Dividing the numerator and the denominator of each expression by b1ðsÞb3ðsÞe
sL=c and defining (same as Eq.

(7))

R1ðsÞ ¼ �
b2ðsÞ

b1ðsÞ
; R2ðsÞ ¼ �

b4ðsÞ

b3ðsÞ
.

C1ðsÞ and C2ðsÞ can be written as

C1ðsÞ ¼
MðsÞ

4fs

e�x0s=c þ R1ðsÞR2ðsÞðsÞe
�ð2Lþx0Þs=c þ 2R2ðsÞðsÞe

�ð2L�x0Þs=c

1� R1ðsÞR2ðsÞe�2Ls=c
(A.9)

C2ðsÞ ¼
MðsÞ

4fs

ex0s=c þ R1ðsÞR2ðsÞe
�sð2L�x0Þ=c þ 2R1ðsÞe

�x0s=c

1� R1ðsÞR2ðsÞe�2Ls=c
. (A.10)

Substituting Eqs. (A.9) and (A.10) into Eq. (5) yields the two cases in Eq. (6).
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Appendix B. Vibration oriented properties of the transfer function (6)

This appendix contains a series of results that prove the statements given in Section 3 regarding the stability
and poles location of the transfer function.

Observation 1. jRiðsÞjp1 for every s in the ORHP with equality only for a free end where RiðsÞ � 1. jRiðjoÞj ¼
1 for oa0 if and only if Di ¼ 0.

Proof. Let s ¼ aþ bj, then

jRiðsÞj ¼
½Jiða

2 þ b2
Þ þ ðDi � fÞaþ Ki� þ ½2JiabþDib� fb�j

½Jiða2 þ b2
Þ þ ðDi þ fÞaþ Ki� þ ½2JiabþDibþ fb�j

. (B.1)

Straightforward calculation lead to

jNumðRiÞj
2 � jDenðRiÞj

2 ¼ �4afJiða
2 þ b2

Þ � 4fDiða
2 þ b2

Þ � 4afKi, (B.2)

where ‘Num’ and ‘Den’ denote the numerator and denominator, respectively. Unless Ji ¼ Ki ¼ Di ¼ 0,
expression (B.2) is negative for all a40, hence jRiðsÞjo1. When a ¼ 0, the left-hand side of Eq. (B.2) is zero if
and only if Di ¼ 0.

Result a. The system does not have poles in the ORHP.

Proof. If Re(s) 4 0, then j expð�2tsÞjo1. From Observation 1 it follows that jR1ðsÞR2ðsÞjp1, therefore s in
the ORHP cannot be a solution of the characteristic equation (17).

Result b. The system has poles on the imaginary axis (except for the origin) if and only if D1 ¼ D2 ¼ 0 (this
result, together with Result a are equivalent to (b) in Section 3.2).

Proof. Since j expð�2tjoÞj ¼ 1, a pole on the imaginary axis requires that jR1ðjoÞR2ðjoÞj ¼ 1. However from
Eq. (B.2), jRiðjoÞjp1 with equality only when Di ¼ 0, hence ‘only if’. If D1 ¼ D2 ¼ 0, |R1ðjoÞR2ðjoÞj ¼ 18o,
hence s ¼ jo is a pole for every o satisfying the angle equation (18).

Result c. If D1 ¼ D2 ¼ 0 all the poles of the system are on the imaginary axis.

Proof. First notice that in the absence of damping, RiðsÞ ¼ 1=Rið�sÞ. Let s� be a solution of the characteristic
equation (17). Then

R1ðs
�ÞR2ðs

�Þe�2ts� ¼ 1. (B.3)

Leading to

R1ð�s�ÞR2ð�s�Þe�2tð�s�Þ ¼
1

R1ðs�ÞR2ðs�Þe�2ts�
¼ 1. (B.4)

Hence –s* is a pole as well. Since no poles exist in the ORHP, all the poles must reside on the
imaginary axis.
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